A simple harmonic oscillator consists of a block attached to a spring with \( \mathrm{k}=200 \ma....
A simple harmonic oscillator consists of a block attached to a spring with \( \mathrm{k}=200 \mathrm{~N} / \mathrm{m} \). The block slides on a frictionless horizontal surface, with equilibrium point \( x=0 \). A graph of the block's velocity \( v \) as a function of time \( t \) is shown.
Correctly match the required information in the left
\( \mathrm{P} \)
column with the values given in the right column. (use \( \pi^{2}=10 \) )
\begin{tabular}{|c|l|l|l|}
\hline \multicolumn{2}{|c|}{ Column I } & \multicolumn{2}{c|}{ Column II } \\
\hline (A) & \begin{tabular}{l}
The block's mass \\
in kg
\end{tabular} & (P) & -0.20 \\
\hline (B) & \begin{tabular}{l}
The block's \\
displacement at \( t \) \\
\( =0 \) in metres
\end{tabular} & (Q) & -200 \\
\hline (C) & \begin{tabular}{l}
The block's \\
acceleration at \( t= \) \\
0.1 sec. in m/sec \( { }^{2} \)
\end{tabular} & (R) & 0.20 \\
\hline (D) & \begin{tabular}{l}
The block's \\
maximum kinetic \\
energy in joule
\end{tabular} & (S) & 4.0 \\
\hline
\end{tabular}
(1) \( \quad(\mathrm{A}-\mathrm{R}) \quad(\mathrm{B}-\mathrm{P}) \quad(\mathrm{C}-\mathrm{S}) \quad(\mathrm{D}-\mathrm{S}) \)
(2) \( \quad(\mathrm{A}-\mathrm{R}) \quad(\mathrm{B}-\mathrm{P}) \quad(\mathrm{C}-\mathrm{Q}) \quad(\mathrm{D}-\mathrm{S}) \)
(3) \( (\mathrm{A}-\mathrm{S}) \quad(\mathrm{B}-\mathrm{P}) \quad(\mathrm{C}-\mathrm{S}) \quad(\mathrm{D}-\mathrm{R}) \)
(4) \( (\mathrm{A}-\mathrm{P}) \quad(\mathrm{B}-\mathrm{S}) \quad(\mathrm{C}-\mathrm{S}) \quad(\mathrm{D}-\mathrm{R}) \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live