Anomalous diffraction theory

Channel:
Subscribers:
9,560
Published on ● Video Link: https://www.youtube.com/watch?v=0CoQvVq5OHU



Duration: 0:03
16 views
0


Anomalous diffraction theory (also van de Hulst approximation, eikonal approximation, high energy approximation, soft particle approximation) is an approximation developed by Dutch astronomer van de Hulst describing light scattering for optically soft spheres.
The anomalous diffraction approximation for extinction efficiency is valid for optically soft particles and large size parameter, x = 2πa/λ:





Q

e
x
t


=
2



4
p


sin


p

+


4

p

2




(
1

cos


p

)


{\displaystyle Q_{ext}=2-{\frac {4}{p}}\sin {p}+{\frac {4}{p^{2}}}(1-\cos {p})}
,where




Q

e
x
t


=

Q

a
b
s


+

Q

s
c
a


=

Q

s
c
a




{\displaystyle Q_{ext}=Q_{abs}+Q_{sca}=Q_{sca}}
in this derivation since the refractive index is assumed to be real, and thus there is no absorption (




Q

a
b
s


=
0


{\displaystyle Q_{abs}=0}
).




Q

e
x
t




{\displaystyle Q_{ext}}
is the efficiency factor of extinction, which is defined as the ratio of the extinction cross section and geometrical cross section πa2. p = 4πa(n – 1)/λ has a physical meaning of the phase delay of the wave passing through the center of the sphere; a is the sphere radius, n is the ratio of refractive indices inside and outside of the sphere, and λ the wavelength of the light.
This set of equations was first described by van de Hulst. There are extensions to more complicated geometries of scattering targets.
The anomalous diffraction approximation offers a very approximate but computationally fast technique to calculate light scattering by particles. The ratio of refractive indices has to be close to 1, and the size parameter should be large. However, semi-empirical extensions to small size parameters and larger refractive indices are possible. The main advantage of the ADT is that one can (a) calculate, in closed form, extinction, scattering, and absorption efficiencies for many typical size distributions; (b) find solution to the inverse problem of predicting size distribution from light scattering experiments (several wavelengths); (c) for parameterization purposes of single scattering (inherent) optical properties in radiative transfer codes.
Another limiting approximation for optically soft particles is Rayleigh scattering, which is valid for small size parameters.


== Notes and references ==

Source: https://en.wikipedia.org/wiki/Anomalous_diffraction_theory
Created with WikipediaReaderReborn (c) WikipediaReader




Other Videos By WikiReader


2021-09-18Russell Shaw Higgs
2021-09-18Common Programming Interface for Communications
2021-09-18Landseer Park
2021-09-18Ricardo Barroso Agramont
2021-09-18Egbert van Kampen
2021-09-18WTVY (TV)
2021-09-18Pitanga River
2021-09-18CFL Line 90
2021-09-18Sand slinger
2021-09-18Director General of Fair Trading v First National Bank plc
2021-09-18Anomalous diffraction theory
2021-09-18Hakone Ropeway
2021-09-18James Bowman (musician)
2021-09-18Robert Fry
2021-09-18Fresh Fruit in Foreign Places
2021-09-18Dickey Chapelle
2021-09-18Robinow syndrome
2021-09-18Phylloxera
2021-09-18Terry Musser
2021-09-18Rémi Cilia
2021-09-18Bruno Jura Hound



Tags:
Eikonalapproximation
Extinctioncrosssection
Extinctionefficiency
HendrikCvandeHulst
Lightscatteringbyparticles
Rayleighscattering
Sizeparameter