At the point of intersection of the rectangular hyperbola \( x y=c^{2} \) and the parabola \( y^...
Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=lbUFm7olJGs
At the point of intersection of the rectangular hyperbola \( x y=c^{2} \) and the parabola \( y^{2}=4 \mathrm{ax} \) tangents to the rectangular hyperbola and the parabola make an angle \( \theta \) and \( \phi \) respectively with the axis of \( X \), then-
(a) \( \theta=\tan ^{-1}(-2 \tan \phi) \)
(b) \( \phi=\tan ^{-1}(-2 \tan \theta) \)
(c) \( \theta=\frac{1}{2} \tan ^{-1}(-\tan \phi) \)
(d) \( \theta=\frac{1}{2} \tan ^{-1}(\tan \phi) \)
๐ฒPW App Link - https://bit.ly/YTAI_PWAP
๐PW Website - https://www.pw.live