\begin{tabular}{|l|l|c|}
\hline \multicolumn{1}{|c|}{ Column-I } & \multicolumn{1}{|c|}{ Column-II } \\
\hline (A) & The ratio of altitude to the radius of the cylinder of maximum volume that can be inscribed in a given sphere is & \( \frac{1}{\sqrt{2}} \) \\
(B) & The ratio of radius to the altitude of the cone of the greatest volume which can be inscribed in a given sphere is & \multicolumn{2}{|c|}{} \\
(C) & The cone circumscribing the sphere of radius ' \( r \) ' has the minimum volume if its semi vertical angle is \( \theta \), then \( 33 \sin \theta= \) \\
(D) & The greatest value of \( x^{3} y^{4} \) if \( 2 x+3 y=7 \), \( x \geq 0, y \geq 0 \) is & (S) \\
\hline
\end{tabular}
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live