\begin{tabular}{|l|l|l|l|} \hline & Column - I & & Column -II \\ \hline (I) & \begin{tabular}{l}....
\begin{tabular}{|l|l|l|l|}
\hline & Column - I & & Column -II \\
\hline (I) & \begin{tabular}{l}
The real values of a for which the \\
quadratic equation \\
, Possesses roots of \\
opposite sign are given by
\end{tabular} & (P) & \\
\hline (II) & \begin{tabular}{l}
If the equation \\
has only negative roots, then
\end{tabular} & (Q) & \\
\hline (III) & \begin{tabular}{l}
The value of for which the inequality \\
is valid \\
for all , is
\end{tabular} & (R) & \\
\hline (IV) & \begin{tabular}{l}
If , then can take all \\
real values if
\end{tabular} & (S) & \\
\hline
\end{tabular}
\begin{tabular}{lllll}
& A & B & C & D \\
(1) & & & & \\
(2) & & & & \\
(3) & & & & \\
(4) & & & &
\end{tabular}📲PW App Link - https://bit.ly/YTAI_PWAP 🌐PW Website - https://www.pw.live