Coding Challenge #92: XOR Problem

Subscribers:
1,740,000
Published on ● Video Link: https://www.youtube.com/watch?v=188B6k_F9jU



Duration: 25:01
107,789 views
1,993


In this coding challenge, I use my Toy Neural Networks library to solve the XOR problem. Code: https://thecodingtrain.com/challenges/92-xor-problem

πŸ•ΉοΈ p5.js Web Editor Sketch: https://editor.p5js.org/codingtrain/sketches/_QGR5d0Bi

πŸŽ₯ Previous video: https://youtu.be/JrRO3OnWs5s?list=PLRqwX-V7Uu6ZiZxtDDRCi6uhfTH4FilpH
πŸŽ₯ Next video: https://youtu.be/uWzPe_S-RVE?list=PLRqwX-V7Uu6ZiZxtDDRCi6uhfTH4FilpH
πŸŽ₯ All videos: https://www.youtube.com/playlist?list=PLRqwX-V7Uu6ZiZxtDDRCi6uhfTH4FilpH

References:
πŸ’» Toy-Neural-Network-JS: https://github.com/CodingTrain/Toy-Neural-Network-JS
πŸ’» Deeplearn.js: https://deeplearnjs.org
πŸ’» ml5.js: https://ml5js.org/

Videos:
πŸš‚ My Neural Networks series: https://www.youtube.com/playlist?list=PLRqwX-V7Uu6aCibgK1PTWWu9by6XFdCfh
πŸš‚ My Perceptron video: https://codingtrain.github.io/website-archive/more/archive/nature-of-code/10-Neural-Networks/10.2-Neural-Networks-Perceptron-Part-1
πŸŽ₯ Neural Networks: https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi

Live Stream Archive:
πŸ”΄ Live Stream Archive #118: https://youtu.be/e8H588SXu6U?t=8090s
πŸ”΄ Live Stream Archive #119: https://youtu.be/f9vaiHoq-Fk?t=3171s

Timestamps:
0:00 Introduction
1:15 Machine learning
3:00 Supervised learning
4:20 XOR problem
7:07 Hidden layer
11:49 Training data
13:14 nn.train()
15:14 nn.predict()
16:26 Visualize results
19:30 Initializing weights
20:15 Learning rate
22:33 Add more hidden nodes
23:40 What's next?

Editing by Mathieu Blanchette
Animations by Jason Heglund
Music from Epidemic Sound

πŸš‚ Website: http://thecodingtrain.com/
πŸ‘Ύ Share Your Creation! https://thecodingtrain.com/guides/passenger-showcase-guide
🚩 Suggest Topics: https://github.com/CodingTrain/Suggestion-Box
πŸ’‘ GitHub: https://github.com/CodingTrain
πŸ’¬ Discord: https://thecodingtrain.com/discord
πŸ’– Membership: http://youtube.com/thecodingtrain/join
πŸ›’ Store: https://standard.tv/codingtrain
πŸ–‹οΈ Twitter: https://twitter.com/thecodingtrain
πŸ“Έ Instagram: https://www.instagram.com/the.coding.train/

πŸŽ₯ Coding Challenges: https://www.youtube.com/playlist?list=PLRqwX-V7Uu6ZiZxtDDRCi6uhfTH4FilpH
πŸŽ₯ Intro to Programming: https://www.youtube.com/playlist?list=PLRqwX-V7Uu6Zy51Q-x9tMWIv9cueOFTFA

πŸ”— p5.js: https://p5js.org
πŸ”— p5.js Web Editor: https://editor.p5js.org/
πŸ”— Processing: https://processing.org

πŸ“„ Code of Conduct: https://github.com/CodingTrain/Code-of-Conduct

This description was auto-generated. If you see a problem, please open an issue: https://github.com/CodingTrain/thecodingtrain.com/issues/new

#neuralnetwork #machinelearning #gradientdescent #xorproblem #javascript #p5js







Tags:
JavaScript (Programming Language)
live
programming
daniel shiffman
creative coding
coding challenge
tutorial
coding
challenges
coding train
the coding train
nature of code
artificial intelligence
live stream
itp nyu
neural network
neural network artist
machine learning
machine learning art
perceptron
linear algebra
neural network intro
neural net
matrix math
matrix multiplication
gradient descent
back propagation
xor