Consider a complex number \( w=\frac{z-i}{2 z+1} \), where \( z=x+ \) iy and \( x, y \in R \). P...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=mRnH9bCLoQ4
Consider a complex number \( w=\frac{z-i}{2 z+1} \), where \( z=x+ \) iy and \( x, y \in R \).
P
If the complex number \( w \) is purely imaginary then locus of \( z \) is -
(A) a straight line
(B) a circle with centre \( \left(-\frac{1}{4}, \frac{1}{2}\right) \) and radius \( \frac{\sqrt{5}}{4} \).
(C) a circle with centre \( \left(\frac{1}{4},-\frac{1}{2}\right) \) and passing through origin.
(D) neither a circle nor a straight line.
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live