Consider a matrix \( A=\left[a_{i j}\right] \) of order \( 3 \times 3 \) such that \( a_{i j}=(k....
Consider a matrix \( A=\left[a_{i j}\right] \) of order \( 3 \times 3 \) such that \( a_{i j}=(k)^{i+j} \) where \( k \in I \).
Match List I with List II and select the correct answer using the codes given below the lists.
\begin{tabular}{|l|l|l|l|}
\hline & List I & & List-II \\
\hline (A) & \( A \) is singular if & (P) & \( k \in\{0\} \) \\
\hline (B) & \( A \) is null matrix if & (Q) & \( k \in \phi \) \\
\hline (C) & \begin{tabular}{l}
\( A \) is skew-symmetric \\
which is not null matrix \\
if
\end{tabular} & (R) & \( k \in I \) \\
\hline (D) & \( A^{2}=3 A \) if & (S) & \( k \in\{-1,0\} \) \\
\hline
\end{tabular}
Codes:
\begin{tabular}{lllll}
& A & B & C & D \\
(1) & \( \mathrm{R} \) & \( \mathrm{P} \) & \( \mathrm{S} \) & \( \mathrm{Q} \) \\
(2) & \( \mathrm{S} \) & \( \mathrm{P} \) & \( \mathrm{Q} \) & \( \mathrm{R} \) \\
(3) & \( \mathrm{R} \) & \( \mathrm{P} \) & \( \mathrm{Q} \) & \( \mathrm{S} \) \\
(4) & \( \mathrm{Q} \) & \( \mathrm{P} \) & \( \mathrm{S} \) & \( \mathrm{R} \)
\end{tabular}
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live