Consider a plane \( \prod: \overrightarrow{\mathbf{r}} \cdot(2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}})=5 \), a line \( L_{1}: \overrightarrow{\mathbf{r}}=(3 \hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}})+\lambda(2 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}-\hat{\mathbf{k}}) \) and a point \( A(3,-4,1) \cdot L_{2} \) is a line passing through \( A \) intersecting \( L_{1} \) and parallel to plane \( \Pi \).
\( \mathrm{P} \) Plane containing \( L_{1} \) and \( L_{2} \) is :
W
(a) parallel to \( y z \)-plane
(b) parallel to \( x \)-axis
(c) parallel to \( y \)-axis
(d) passing through origin
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live