Consider the function defined on \( [0,1] \rightarrow R \) \( \math...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=Sogto11oTC8
Consider the function defined on \( [0,1] \rightarrow R \)
\( \mathrm{P} \) \( f(x)=\frac{\sin x-x \cos x}{x^{2}} \), if \( x \neq 0 \) and \( f(0)=0 \).
W \( \lim _{t \rightarrow 0} \frac{1}{t^{2}} \int_{0}^{t} f(x) d x \) is equal to
(a) \( 1 / 3 \)
(b) \( 1 / 6 \)
(c) \( 1 / 12 \)
(d) \( 1 / 24 \)
š²PW App Link - https://bit.ly/YTAI_PWAP
šPW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw