The value of \( f(x)=\int_{0}^{\pi / 2} \frac{\log \left(1+x \sin ^...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=rWV3KIhR-4c
The value of \( f(x)=\int_{0}^{\pi / 2} \frac{\log \left(1+x \sin ^{2} \theta\right)}{\sin ^{2} \theta} d \theta, x \geq 0 \) is equal to
\( \mathrm{P} \)
(a) \( \frac{1}{\pi}(\sqrt{1+x}-1) \)
(b) \( \sqrt{\pi}(\sqrt{1+x}-1) \)
(c) \( \pi(\sqrt{1+x}-1) \)
(d) None of these
W
π²PW App Link - https://bit.ly/YTAI_PWAP
πPW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw