Consider two points \( \mathrm{A} \equiv(1,2) \) and \( \mathrm{B} \equiv(3,-1) \). Let \( \math...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=oATfk0xWRwc
Consider two points \( \mathrm{A} \equiv(1,2) \) and \( \mathrm{B} \equiv(3,-1) \). Let \( \mathrm{M} \) be a point on the straight line \( \mathrm{L} \equiv \mathrm{x}+\mathrm{y}=0 \). If \( \mathrm{M} \) be a point on the line \( \mathrm{L}=0 \) such that \( \mathrm{AM}+\mathrm{BM} \) is minimum, then the reflection of \( \mathrm{M} \) in the line
P \( x=y \) is -
(A) \( (1,-1) \)
(B) \( (-1,1) \)
(C) \( (2,-2) \)
(D) \( (-2,2) \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live