Dominik Hangleiter: (How) can we verify quantum supremacy?

Channel:
Subscribers:
2,520
Published on ● Video Link: https://www.youtube.com/watch?v=NWOZs5mAfYk



Duration: 58:48
209 views
0


Demonstrating a superpolynomial quantum speedup using feasible schemes has become a key near-term goal in the field of quantum simulation and computation. The most prominent schemes for "quantum supremacy" such as boson sampling or random circuit sampling are based on the task of sampling from the output distribution of a certain randomly chosen unitary. But to convince a skeptic of a successful demonstration of quantum supremacy, one must verify that the sampling device produces the correct outcomes. I will first identify a fundamental obstacle towards verifying such devices: ironically, sample-efficient certification based on the experimental output data alone is prohibited by the same property that allows proving the robustness of quantum supremacy to small experimental errors. In the second part of the talk, I will view this no-go result as an invitation to be circumvented. I will discuss alternative certification schemes that exploit known structure of the device, for instance, the possibility to perform quantum measurements in different bases.




Other Videos By QuICS


2020-10-21Urmila Mahadev: Classical homomorphic encryption for quantum circuits
2020-10-08Thomas Baker: Density functionals, Kohn-Sham potentials & Green’s functions from a quantum computer
2020-09-23James D. Whitfield: Limitations of Hartree-Fock with Quantum Resources
2020-09-18Mark Wilde: Quantum Renyi relative entropies and their use
2020-08-17Dmitry Green: A superconducting circuit realization of combinatorial gauge symmetry
2020-07-23Matt Hastings: The Power of Adiabatic Quantum Computation with No Sign Problem
2020-06-19William Slofstra: Arkhipov's theorem, games, groups, and graphs
2020-06-10Ramis Movassagh:Cayley path & quantum supremacy:Average case # P-Hardness of random circuit sampling
2020-06-04Steve Flammia: Characterization of Solvable Spin Models via Graph Invariants
2020-05-20Aram Harrow: Small Quantum Computers and Large Classical Data Sets
2020-02-05Dominik Hangleiter: (How) can we verify quantum supremacy?
2020-02-05Giacomo Torlai: Enhancing Quantum Simulators with Neural Networks
2019-11-21Felix Leditzky: Playing Games with Multiple Access Channels
2019-11-14Anand Natarajan: NEEXP ⊆ MIP*
2019-11-14Alex B. Grilo: Recent advances in Zero-knowledge proofs in the quantum setting
2019-10-03Andrea Coladangelo: A simple two-player dimension witness based on embezzlement
2019-09-06John Preskill: Quantum speedups in the NISQ era
2019-09-06Aditya Nema: Unitary Designs and quantum channels with super additive classical capacity
2019-09-06Krysta Svore: Programming for quantum solutions today and tomorrow
2019-09-06R. Teal Witter: Applications of the quantum algorithm for st-connectivity
2019-09-06Bryan O'Gorman: Parametrization of tensor network contraction



Tags:
quantum computing