Efficiently Exploiting Model Structure in Network Causal Inference with and without...

Published on ● Video Link: https://www.youtube.com/watch?v=_J1Ujy2HXVw



Duration: 45:41
387 views
14


Christina Lee Yu (Cornell University) presenting Virtually
https://simons.berkeley.edu/node/22598
Graph Limits, Nonparametric Models, and Estimation

In many domains, we are interested in estimating the total causal treatment effect in the presence of network interference, where the outcome of one individual or unit is affected by the treatment assignment of those in its local network. Additional challenges arise when complex cluster randomized designs are not feasible to implement, or the network is unknown and costly to estimate. We propose a new measure of model complexity that characterizes the difficulty of estimating the total treatment effect under the standard A/B testing setup. We provide a class of unbiased estimators whose variance is optimal with respect to the population size and the treatment budget. Furthermore, we show that when the network is completely unknown, we can still estimate the total treatment effect under a richer yet simple staggered rollout experimental design. The proposed design principles, and related estimator, work with a broad class of outcome models. Our solution and statistical guarantees do not rely on restrictive network properties, allowing for highly connected networks that may not be easily clustered. This is joint work with Edoardo Airoldi, Christian Borgs, Jennifer Chayes, Mayleen Cortez, and Matthew Eichhorn







Tags:
Simons Institute
theoretical computer science
UC Berkeley
Computer Science
Theory of Computation
Theory of Computing
Graph Limits Nonparametric Models and Estimation
Christina Lee Yu