Find the number of values of \( x \) satisfying the relation \[ \al...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=yuoozILFhSk
Find the number of values of \( x \) satisfying the relation
\[
\alpha_{1}^{3}\left(\frac{\prod_{i=2}^{n}\left(x-\alpha_{i}\right)}{\prod_{i=2}^{n}\left(\alpha_{1}-\alpha_{i}\right)}\right)+\sum_{j=2}^{n-1}\left(\left(\frac{\prod_{i=1}^{j-1}\left(x-\alpha_{i}\right) \prod_{i=j+1}^{n}\left(x-\alpha_{i}\right)}{\prod_{i=1}^{j-1}\left(\alpha_{j}-\alpha_{i}\right) \prod_{i=j+1}^{n}\left(\alpha_{j}-\alpha_{i}\right)}\right) \alpha_{j}^{3}\right)+\left(\frac{\prod_{i=1}^{n-1}\left(x-\alpha_{i}\right)}{\prod_{i=1}^{n-1}\left(\alpha_{n}-\alpha_{i}\right)}\right) \alpha_{n}^{3}-x^{3}=0(\text { where } n \geq 5) .
\]
P
W
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw