For a prism of refracting angle \( \mathrm{A} \) and refractive index 2. Assume rays are inciden...
For a prism of refracting angle \( \mathrm{A} \) and refractive index 2. Assume rays are incident at all angles of incidence \( 0^{\circ} \leq \mathrm{i} \leq 90^{\circ} \). Ignore partial reflection.
\begin{tabular}{|c|l|c|l|}
\hline & \multicolumn{1}{|c|}{ Column-I } & & \multicolumn{1}{|c|}{ Column-II } \\
\hline A. & \( \mathrm{A}=15^{\circ} \) & p. & \( \begin{array}{l}\text { All rays are reflected back from } \\
\text { the second surface. }\end{array} \) \\
\hline \( \mathrm{B} \). & \( \mathrm{A}=45^{\circ} \) & q. & \( \begin{array}{l}\text { All rays are refracted into air } \\
\text { from the second surface }\end{array} \) \\
\hline C. & \( \mathrm{A}=70^{\circ} \) & r. & \( \begin{array}{l}\text { Some rays are reflected into air } \\
\text { from the second surface }\end{array} \) \\
\hline D. & \( \mathrm{A}=50^{\circ} \) & s. & \( \begin{array}{l}\text { Some rays are refracted into air } \\
\text { from the second surface }\end{array} \) \\
\hline
\end{tabular}
(1) A-(r); B-(s); C-(r); D-(q)
(2) A-(p); B-(q); C-(p, s); D-(r)
(3) A-(q, s); B-(p); C-(r); D-(s)
(4) A-(q); B-(r, s); C-(p); D-(r, s)
π²PW App Link - https://bit.ly/YTAI_PWAP
πPW Website - https://www.pw.live