From a point \( P \) perpendicular tangents \( P Q \) and \( P R \)...
Channel:
Subscribers:
458,000
Published on ● Video Link: https://www.youtube.com/watch?v=3LxpVBB4Xh8
From a point \( P \) perpendicular tangents \( P Q \) and \( P R \)
\( \mathrm{P} \) are drawn to ellipse \( x^{2}+4 y^{2}=4 \), then locus of
W circumcenter of triangle \( P Q R \) is
(1) \( x^{2}+y^{2}=\frac{16}{5}\left(x^{2}+4 y^{2}\right)^{2} \)
(2) \( x^{2}+y^{2}=\frac{5}{16}\left(x^{2}+4 y^{2}\right)^{2} \)
(3) \( x^{2}+4 y^{2}=\frac{16}{5}\left(x^{2}+y^{2}\right)^{2} \)
(4) \( x^{2}+4 y^{2}=\frac{16}{5}\left(x^{2}+y^{2}\right)^{2} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw