From a solid sphere of mass \( M \) and radius \( \mathrm{R} \), a ...
Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=1DwhujTJ3kQ
From a solid sphere of mass \( M \) and radius \( \mathrm{R} \), a spherical portion of radius \( \frac{\mathrm{R}}{2} \) is removed, as shown in the figure. Taking gravitational potential \( \mathrm{V}=0 \) at \( \mathrm{r}=\infty \), the potential at the centre of the cavity thus formed is: ( \( G= \) gravitational constant \( ) \)
\( \mathrm{P} \)
W
(A) \( \frac{-2 \mathrm{GM}}{3 \mathrm{R}} \)
(B) \( \frac{-2 \mathrm{GM}}{\mathrm{R}} \)
(C) \( \frac{-\mathrm{GM}}{2 \mathrm{R}} \)
(D) \( \frac{-\mathrm{GM}}{\mathrm{R}} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw