Fuzzy mathematics | Wikipedia audio article
This is an audio version of the Wikipedia Article:
https://en.wikipedia.org/wiki/Fuzzy_mathematics
00:00:38 1 Some fields of mathematics using fuzzy set theory
00:01:17 2 See also
00:01:56 3 References
Listening is a more natural way of learning, when compared to reading. Written language only began at around 3200 BC, but spoken language has existed long ago.
Learning by listening is a great way to:
- increases imagination and understanding
- improves your listening skills
- improves your own spoken accent
- learn while on the move
- reduce eye strain
Now learn the vast amount of general knowledge available on Wikipedia through audio (audio article). You could even learn subconsciously by playing the audio while you are sleeping! If you are planning to listen a lot, you could try using a bone conduction headphone, or a standard speaker instead of an earphone.
Listen on Google Assistant through Extra Audio:
https://assistant.google.com/services/invoke/uid/0000001a130b3f91
Other Wikipedia audio articles at:
https://www.youtube.com/results?search_query=wikipedia+tts
Upload your own Wikipedia articles through:
https://github.com/nodef/wikipedia-tts
Speaking Rate: 0.854480416688615
Voice name: en-US-Wavenet-E
"I cannot teach anybody anything, I can only make them think."
- Socrates
SUMMARY
=======
Fuzzy mathematics forms a branch of mathematics related to fuzzy set theory and fuzzy logic. It started in 1965 after the publication of Lotfi Asker Zadeh's seminal work Fuzzy sets. A fuzzy subset A of a set X is a function A:X→L, where L is the interval [0,1]. This function is also called a membership function. A membership function is a generalization of a characteristic function or an indicator function of a subset defined for L = {0,1}. More generally, one can use a complete lattice L in a definition of a fuzzy subset A
.The evolution of the fuzzification of mathematical concepts can be broken down into three stages:
straightforward fuzzification during the sixties and seventies,
the explosion of the possible choices in the generalization process during the eighties,
the standardization, axiomatization and L-fuzzification in the nineties.Usually, a fuzzification of mathematical concepts is based on a generalization of these concepts from characteristic functions to membership functions. Let A and B be two fuzzy subsets of X.
Intersection A ∩ B and union A ∪ B are defined as follows: (A ∩ B)(x) = min(A(x),B(x)), (A ∪ B)(x) = max(A(x),B(x)) for all x ∈ X. Instead of min and max one can use t-norm and t-conorm, respectively
, for example, min(a,b) can be replaced by multiplication ab. A straightforward fuzzification is usually based on min and max operations because in this case more properties of traditional mathematics can be extended to the fuzzy case.
A very important generalization principle used in fuzzification of algebraic operations is a closure property. Let * be a binary operation on X. The closure property for a fuzzy subset A of X is that for all x,y ∈ X, A(x*y) ≥ min(A(x),A(y)). Let (G,*) be a group and A a fuzzy subset of G. Then A is a fuzzy subgroup of G if for all x,y in G, A(x*y−1) ≥ min(A(x),A(y−1)).
A similar generalization principle is used, for example, for fuzzification of the transitivity property. Let R be a fuzzy relation in X, i.e. R is a fuzzy subset of X×X. Then R is transitive if for all x,y,z in X, R(x,z) ≥ min(R(x,y),R(y,z)).