\( f(x)=\left\{\begin{array}{ll}\frac{|x+2|}{\tan ^{-1}(x+2)}, & x \neq-2 \\ 2 & , x=-2\end{arra...
Channel:
Subscribers:
451,000
Published on ● Video Link: https://www.youtube.com/watch?v=BGJf9Ahwo-w
\( f(x)=\left\{\begin{array}{ll}\frac{|x+2|}{\tan ^{-1}(x+2)}, & x \neq-2 \\ 2 & , x=-2\end{array}\right. \), then \( f(x) \),
(A) continuous at \( x=-2 \)
(B) not continuous at \( x=-2 \)
(C) differentiable at \( x=-2 \)
(D) continuous but not derivable at \( x=-2 \)
ЁЯУ▓PW App Link - https://bit.ly/YTAI_PWAP
ЁЯМРPW Website - https://www.pw.live