Given radius of Earth ' \( R \) ' and length of a day ' \( T \) ' the height of a geostationary ...
Channel:
Subscribers:
456,000
Published on ● Video Link: https://www.youtube.com/watch?v=aepDHD0bH44
Given radius of Earth ' \( R \) ' and length of a day ' \( T \) ' the height of a geostationary satellite is [G-Gravitational Constant, M-Mass of Earth]
[MP PMT 2002]
(a) \( \left(\frac{4 \pi^{2} G M}{T^{2}}\right)^{1 / 3} \)
(b) \( \left(\frac{4 \pi G M}{R^{2}}\right)^{1 / 3}-R \)
(c) \( \left(\frac{G M T^{2}}{4 \pi^{2}}\right)^{1 / 3}-R \)
(d) \( \left(\frac{G M T^{2}}{4 \pi^{2}}\right)^{1 / 3}+R \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw