(i) If \( z_{1}, z_{2}, z_{3} \), are unimodular complex (a) \( \frac{1}{2} \) \( \mathrm{P} \) ...
(i) If \( z_{1}, z_{2}, z_{3} \), are unimodular complex
(a) \( \frac{1}{2} \)
\( \mathrm{P} \) numbers such that \( \left|z_{1}-z_{2}+z_{3}\right|=4 \)
W then \( \left|\frac{1}{z_{1}}-\frac{1}{z_{2}}+\frac{1}{z_{3}}\right| \) is
(ii) The planes \( 2 x-3 y-7 z=0 \),
(b) 3 \( 2 x-14 y-13 z=0 \) and, \( 8 x-31 y-33 z=0 \) pass through the same line if \( \lambda \) is
(iii) If \( \tan ^{-1} \frac{\sqrt{1-x^{2}}-1}{x}: \tan ^{-1} x=a: 1 \) then \( a \) is
(c) 2
(iv) In the \( \triangle A B C \) the median
(d) 4
\( A D=\frac{1}{\sqrt{11-6 \sqrt{3}}} \) and the median divides \( \angle \mathrm{A} \) into angles of \( 30^{\circ} \) and \( 45^{\circ} \). The length of \( B C \) is
π²PW App Link - https://bit.ly/YTAI_PWAP
πPW Website - https://www.pw.live