If \( a^{3}+b^{3}+6 a b c=8 c^{3} \& \omega \) is a cube root of unity then :
(a) \( a, c, b \) ... VIDEO
If \( a^{3}+b^{3}+6 a b c=8 c^{3} \& \omega \) is a cube root of unity then :
(a) \( a, c, b \) are in A.P.
(b) \( a, c, b \) are in H.P.
(c) \( a+b \omega-2 c \omega^{2}=0 \)
(d) \( a+b \omega^{2}-2 c \omega=0 \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions 2023-07-03 If \( z \) is any complex number satisfying \( |z-k|=k \), where \( k \) is positive real number... 2023-07-03 For how many positive integers \( n \) less than or equal to 1000 is \( (\sin t+i \cos t)^{n}=... 2023-07-03 \( \operatorname{Sin}^{-1}\left[\frac{(z-1)}{i}\right], z \) is non real, can be the angle of tr... 2023-07-03 If \( z=x+i y(x, y \in R, x \neq-1 / 2) \), the number of values of \( z \) satisfying \( |z|^{\... 2023-07-03 Let \( F(z)=\frac{z+i}{z-i} \) for all complex numbers \( z \neq i \) and \( z_{n}= \) \( F\left... 2023-07-03 Let \( p=x+y+z+a(y+z-2 x) \)
\[
\begin{array}{l}
q=x+y+z+a(z+x-2 y) \\
r=x+y+z+a(x+y-2 z)
\end{a... 2023-07-03 Let \( p=x+y+z+a(y+z-2 x) \)
\[
\begin{array}{l}
q=x+y+z+a(z+x-2 y) \\
r=x+y+z+a(x+y-2 z)
\end{a... 2023-07-03 Let \( z \) represents complex number satisfying \( |z-2|=1 \), then
(a) Least value of \( \arg ... 2023-07-03 Dividing \( f(z) \) by \( z-i \), we obtain the remainder \( 1-i \) and dividing it by \( z+i \)... 2023-07-03 If \( \left|z_{1}+z_{2}\right|=\left|z_{1}-z_{2}\right| \) then
(a) \( \left|\operatorname{amp} ... 2023-07-03 If \( a^{3}+b^{3}+6 a b c=8 c^{3} \& \omega \) is a cube root of unity then :
(a) \( a, c, b \) ... 2023-07-03 If \( \omega \) is an imaginary \( x^{n} \) root of unitythen \( \sum_{r=1}^{n}(a r+b) \omega^{r... 2023-07-03 If \( \alpha \) is the \( n^{\text {th }} \) root of unity, then \( 1+2 \alpha+3 \alpha^{2}+\ldo... 2023-07-03 The polynomial \( x^{6}+4 x^{5}+3 x^{4}+2 x^{3}+x+1 \) is divisible by
(a) \( x+\omega \)
(b) \(... 2023-07-03 Given \( \mathrm{f}(\mathrm{z})= \) the real part of a complex number \( \mathrm{z} \). For exam... 2023-07-03 If \( x=9^{1 / 3} 9^{1 / 9} 9^{1 / 27} \ldots \ldots \infty, y=4^{1 / 3} 4-1 / 94^{1 / 27} \ldot... 2023-07-03 If \( |z+1|+|z-3|=6 \) and \( |z|=|z-2| \), then find \( z \) ?
(a) \( 1 \pm \sqrt{5} i \)
(b) \... 2023-07-03 If \( z_{1}, z_{2}, z_{3} \) are three complex numbers and \( A=\left|\begin{array}{ccc}\arg z_{... 2023-07-03 Find the area bounded by the curves \( \operatorname{Arg} \mathrm{z}=\pi / 3 \), \( \operatornam... 2023-07-03 If \( x^{6}=(4-3 i)^{5} \), then the product of all of its roots \( \left(\right. \) where \( \l... 2023-07-03 A root of unity is a complex number that is a solution to the equation \( z^{n}=1 \) for some po...