If \( z \) is any complex number satisfying \( |z-k|=k \), where \( k \) is positive real number...

Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=UCWgAlbhpIY



Duration: 7:29
0 views
0


If \( z \) is any complex number satisfying \( |z-k|=k \), where \( k \) is positive real number, then which of the following is correct?
\begin{tabular}{|c|l|c|l|}
\hline \multicolumn{2}{|c|}{ Column-I } & \multicolumn{2}{c|}{ Column-II } \\
\hline A. & \( |\mathrm{z}|_{\max } \) & p. & 0 \\
\hline B. & \( |\mathrm{z}|_{\min } \) & q. & \( : k+\sqrt{k^{2}+1} \) \\
\hline C. & \( |z-i|_{\max } \) & r & \( \sqrt{k^{2}+1}-k \) \\
\hline D. & \( |z-i|_{\min } \) & s. & \( 2 k \) \\
\hline
\end{tabular}
(a) \( \mathrm{A} \rightarrow \mathrm{s} ; \mathrm{B} \rightarrow \mathrm{p} ; \mathrm{C} \rightarrow \mathrm{q} ; \mathrm{D} \rightarrow \mathrm{r} \)
(b) \( \mathrm{A} \rightarrow \mathrm{r} ; \mathrm{B} \rightarrow \mathrm{s} ; \mathrm{C} \rightarrow \mathrm{q} ; \mathrm{D} \rightarrow \mathrm{p} \)
(c) \( \mathrm{A} \rightarrow \mathrm{q} ; \mathrm{B} \rightarrow \mathrm{p} ; \mathrm{C} \rightarrow \mathrm{r} ; \mathrm{D} \rightarrow \mathrm{s} \)
(d) \( \mathrm{A} \rightarrow \mathrm{s} ; \mathrm{B} \rightarrow \mathrm{p} ; \mathrm{C} \rightarrow \mathrm{r} ; \mathrm{D} \rightarrow \mathrm{q} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live




Other Videos By PW Solutions


2023-07-03Consider \( a z^{2}+b z+c=0 \), where \( a, b, c \in R \) and \( 4 a cb^{2} \). If \( z_{1} \) a...
2023-07-03Use complex numbers to find the sum \( \sum_{r=0}^{n-1} \cos ^{2}\left(\alpha+\frac{r \pi}{n}\ri...
2023-07-03Let \( \alpha+\mathrm{i} \beta ; \alpha, \beta \in \mathrm{R} \), be a root of the equation \( \...
2023-07-03The \( \mathrm{z}^{10}+(13 \mathrm{z}-1)^{10}=0 \) has 10 complex roots \( z_{1}, \bar{z}_{1}, z...
2023-07-03Let a,b,c be distinct complex numbers such that \( \frac{a}{1-b}=\frac{b}{1-c}=\frac{c}{1-a}=k \...
2023-07-03Let \( z_{1} \) and \( z_{2} \) be complex numbers such that \( z_{1} \neq z_{2} \) and \( \left...
2023-07-03Let \( z_{1}, z_{2}, z_{3} \) be three points on \( |z|=1 \) Let \( \theta_{1} \theta_{2} \), an...
2023-07-03If \( p \) and \( q \) are distinct prime numbers, then the number of distinct imaginary num...
2023-07-03If \( \alpha, \beta \) be the roots of the equation \( u^{2}-2 u+2=0 \) and if cot \( \theta=x+1...
2023-07-03If \( \arg \left(\frac{z_{1}-\frac{z}{|z|}}{\frac{z}{|z|}}\right)=\frac{\pi}{2} \) and \( \left|...
2023-07-03If \( z \) is any complex number satisfying \( |z-k|=k \), where \( k \) is positive real number...
2023-07-03For how many positive integers \( n \) less than or equal to 1000 is \( (\sin t+i \cos t)^{n}=...
2023-07-03\( \operatorname{Sin}^{-1}\left[\frac{(z-1)}{i}\right], z \) is non real, can be the angle of tr...
2023-07-03If \( z=x+i y(x, y \in R, x \neq-1 / 2) \), the number of values of \( z \) satisfying \( |z|^{\...
2023-07-03Let \( F(z)=\frac{z+i}{z-i} \) for all complex numbers \( z \neq i \) and \( z_{n}= \) \( F\left...
2023-07-03Let \( p=x+y+z+a(y+z-2 x) \) \[ \begin{array}{l} q=x+y+z+a(z+x-2 y) \\ r=x+y+z+a(x+y-2 z) \end{a...
2023-07-03Let \( p=x+y+z+a(y+z-2 x) \) \[ \begin{array}{l} q=x+y+z+a(z+x-2 y) \\ r=x+y+z+a(x+y-2 z) \end{a...
2023-07-03Let \( z \) represents complex number satisfying \( |z-2|=1 \), then (a) Least value of \( \arg ...
2023-07-03Dividing \( f(z) \) by \( z-i \), we obtain the remainder \( 1-i \) and dividing it by \( z+i \)...
2023-07-03If \( \left|z_{1}+z_{2}\right|=\left|z_{1}-z_{2}\right| \) then (a) \( \left|\operatorname{amp} ...
2023-07-03If \( a^{3}+b^{3}+6 a b c=8 c^{3} \& \omega \) is a cube root of unity then : (a) \( a, c, b \) ...