If \( A=\left[\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2}...
If \( A=\left[\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right], B=\left[\begin{array}{ccc}\omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega \\ \omega & \omega^{2} & 1\end{array}\right] \) and \( C=\left[\begin{array}{c}1 \\ \omega \\ \omega^{2}\end{array}\right] \) where \( \omega \) is the complex cube root of 1 then \( (A \) \( +B) C \) is equal to
(a) \( \left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right] \)
(b) \( \left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \)
(c) \( \left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right] \)
(d) \( \left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \)
π²PW App Link - https://bit.ly/YTAI_PWAP
πPW Website - https://www.pw.live