If \( \alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n} \) are...
Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=E0xQcur3ooI
If \( \alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n} \) are roots of the equation
\( x^{n}+p_{1} x^{n-1}+p_{2} x^{n-2}+\ldots+p_{n-1} x+p_{n}=0 \), then prove that
\[
\begin{aligned}
\left(1-p_{2}+\right. & \left.p_{4}+\ldots\right)^{2}+\left(p_{1}-p_{3}+p_{5} \ldots\right)^{2} \\
& =\left(1+\alpha_{1}^{2}\right)\left(1+\alpha_{2}^{2}\right)\left(1+\alpha_{3}^{2}\right) \ldots\left(1+\alpha_{n}^{2}\right) .
\end{aligned}
\]
\( \mathrm{P} \)
W
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw