If \( f(x)=\log _{x^{2}}(\log x) \), then \( f^{\prime}(x) \) at \(...
If \( f(x)=\log _{x^{2}}(\log x) \), then \( f^{\prime}(x) \) at \( x=e \) is
\( \mathrm{P} \)
(a) 0
(b) 1
(c) \( 1 / e \)
(d) \( 1 / 2 e \)
W
📲 PW App Link - https://bit.ly/YTAI_PWAP
🌐 PW Website - https://www.pw.live/
Other Videos By PW Solutions
2023-02-25 | Using differentials, find the approximate values of the following:
... |
2023-02-25 | If \( y=x^{x} \), find \( \frac{d y}{d x} \) at \( x=e \). |
2023-02-25 | If \( -\frac{\pi}{2}x0 \) and \( y=\tan ^{-1} \sqrt{\frac{1-\cos 2 ... |
2023-02-25 | If \( f(1)=3, f^{\prime}(1)=2 \), then
\( \mathrm{P} \) \( \frac{d}... |
2023-02-25 | Using differentials, find the approximate values of the following:
... |
2023-02-25 | If \( f(x)=|\cos x-\sin x| \), then \( f^{\prime}\left(\frac{\pi}{3... |
2023-02-25 | If \( x=a \cos ^{3} \theta, y=a \sin ^{3} \theta \), then \( \sqrt{... |
2023-02-25 | If \( f(x)=\sqrt{x^{2}-10 x+25} \), then the derivative of \( f(x) ... |
2023-02-25 | If \( f(x)=\left|x^{2}-9 x+20\right| \), then \( f^{\prime}(x) \) i... |
2023-02-25 | If \( \mathrm{f}(\mathrm{x})=\sqrt{x^{2}+6 x+9} \), then \( f^{\pri... |
2023-02-25 | If \( f(x)=\log _{x^{2}}(\log x) \), then \( f^{\prime}(x) \) at \(... |
2023-02-25 | Differentiate \( \sin ^{-1} \sqrt{1-x^{2}} \) with respect to \( \c... |
2023-02-25 | Differentiate \( \sin ^{-1} \sqrt{1-x^{2}} \) with respect to \( \c... |
2023-02-25 | Differentiate the following function with respect to \( x \) :
\( \... |
2023-02-25 | If \( (\cos x)^{y}=(\tan y)^{x} \), prove that \( \frac{d y}{d x}=\... |
2023-02-25 | Differentiate the following function from first principal:
P
\[
e^{... |
2023-02-25 | Find \( \frac{d y}{d x} \), when
\( \mathrm{P} \)
\[
x=\frac{2 t}{1... |
2023-02-25 | Differentiate the following function with respect to \( x \) :
\( \... |
2023-02-25 | Differentiate \( \log \left(1+x^{2}\right) \) with respect to \( \t... |
2023-02-25 | If \( e^{x+y}-x=0 \), prove that \( \frac{d y}{d x}=\frac{1-x}{x} \) |
2023-02-25 | Differentiate the following function with respect to \( x \) :
\( \... |