If \( \int g(x) d x=g(x) \), then \( \int g(x)\left\{f(x)+f^{\prime}(x)\right\} d x \) is equal ...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=Ty0AeTsPPdk
If \( \int g(x) d x=g(x) \), then \( \int g(x)\left\{f(x)+f^{\prime}(x)\right\} d x \) is equal to
(A) \( g(x) f(x)-g(x) f^{\prime}(x)+C \)
(B) \( g(x) f^{\prime}(x)+C \)
(C) \( g(x) f(x)+C \)
(D) \( g(x) f^{2}(x)+C \)
ЁЯУ▓PW App Link - https://bit.ly/YTAI_PWAP
ЁЯМРPW Website - https://www.pw.live