If \( \sum_{r=1}^{n} t_{r}=\frac{n(n+1)(n+2)(n+3)}{8} \), then \( \...
Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=m_G1h3ZdHXM
If \( \sum_{r=1}^{n} t_{r}=\frac{n(n+1)(n+2)(n+3)}{8} \), then \( \sum_{r=1}^{n} \frac{1}{t_{r}} \) equals
\( \mathrm{P} \)
(A) \( -\left(\frac{1}{(n+1)(n+2)}-\frac{1}{2}\right) \)
(B) \( \left(\frac{1}{(n+1)(n+2)}-\frac{1}{2}\right) \)
(C) \( \left(\frac{1}{(n+1)(n+2)}+\frac{1}{2}\right) \)
(D) \( \left(\frac{1}{(n-1)(n-2)}+\frac{1}{2}\right) \)
π²PW App Link - https://bit.ly/YTAI_PWAP
πPW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw