If the angle between the asymptotes of hyperbola \( \frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{...
Channel:
Subscribers:
453,000
Published on ● Video Link: https://www.youtube.com/watch?v=8EI5g87okNk
If the angle between the asymptotes of hyperbola \( \frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1 \) is \( 120^{\circ} \) and the product of perpendiculars drawn from the foci upon its any tangent is 9 , then the locus of the point of intersection of perpendicular tangents of the hyperbola can be:
(a) \( x^{2}+y^{2}=6 \)
(b) \( x^{2}+y^{2}=9 \)
(c) \( x^{2}+y^{2}=3 \)
(d) \( x^{2}+y^{2}=18 \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live