If the sum of the slopes of the normals from a point \( P \) to the hyperbola \( x y=c^{2} \) is...
Channel:
Subscribers:
443,000
Published on ● Video Link: https://www.youtube.com/watch?v=4GEanxPJ32c
If the sum of the slopes of the normals from a point \( P \) to the hyperbola \( x y=c^{2} \) is equal to \( \lambda\left(\lambda \in R^{+}\right) \), then
\( \mathrm{P} \) locus of point \( P \) is
W
(a) \( x^{2}-y^{2}=\lambda c^{2} \)
(b) \( y^{2}=\lambda c^{2} \)
(c) \( x y=\lambda c^{2} \)
(d) \( x^{2}=\lambda c^{2} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw