If \( P \) is a point on the ellipse \( \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \), whose foci...
Channel:
Subscribers:
443,000
Published on ● Video Link: https://www.youtube.com/watch?v=TNohY1Z2Ivo
If \( P \) is a point on the ellipse \( \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \), whose foci
\( \mathrm{P} \) are \( S \) and \( S^{\prime} \). Let \( \angle P S S^{\prime}=\theta \) and \( \angle P S^{\prime} S=\phi \), then
W
\( \begin{array}{ll}\text { (a) } S P+S^{\prime} P=2 a \text {, if } ab & \text { (b) } S P+S^{\prime} P=2 b \text {, if } ba\end{array} \)
(c) \( \tan \left(\frac{\theta}{2}\right) \tan \left(\frac{\phi}{2}\right)=\frac{1-e}{1+e} \) (d) \( \tan \left(\frac{\theta}{2}\right) \tan \left(\frac{\phi}{2}\right)=\frac{e-1}{e+1} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw