In qualitative analysis, the metals of group I can be separated fro...
In qualitative analysis, the metals of group I can be separated from other ions by precipitating them as chloride salts. A solution initially contains \( \mathrm{Ag}^{+} \)and \( \mathrm{Pb}^{2+} \) at a concentration of \( 0.10 \mathrm{M} \). Aqueous \( \mathrm{HCl} \) is added to this solution until the \( \mathrm{Cl}^{-} \)concentration is \( 0.10 \mathrm{M} \). What will the concentrations of \( \mathrm{Ag}^{+} \)and \( \mathrm{Pb}^{2+} \) be at equilibrium? \( \left(K_{s p}\right. \) for \( \mathrm{AgCl}=1.8 \times 10^{-10}, K_{s p} \) for \( \mathrm{PbCl}_{2} \)
\[
=1.7 \times 10^{-5} \text { ) }
\]
(a) \( \left[\mathrm{Ag}^{+}\right]=1.8 \times 10^{-7} \mathrm{M},\left[\mathrm{Pb}^{2+}\right]=1.7 \times 10^{-6} \mathrm{M} \)
(b) \( \left[\mathrm{Ag}^{+}\right]=1.8 \times 10^{-11} \mathrm{M},\left[\mathrm{Pb}^{2+}\right]=8.5 \times 10^{-5} \mathrm{M} \)
(c) \( \left[\mathrm{Ag}^{+}\right]=1.8 \times 10^{-9} \mathrm{M},\left[\mathrm{Pb}^{2+}\right]=1.7 \times 10^{-3} \mathrm{M} \)
(d) \( \left[\mathrm{Ag}^{+}\right]=1.8 \times 10^{-11} \mathrm{M},\left[\mathrm{Pb}^{2+}\right]=1.7 \times 10^{-4} \mathrm{M} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live