Jonathan Conrad: GKP Codes: A Rosetta Stone for Quantum Error Correction

Channel:
Subscribers:
2,450
Published on ● Video Link: https://www.youtube.com/watch?v=r1s4GbsDWwg



Game:
Duration: 0:00
173 views
0


In recent years, the use of Gottesman-Kitaev-Preskill (GKP) Codes to implement fault-tolerant quantum computation has gained significant traction and evidence for their experimental utility has steadily grown. But what does it even mean for quantum computation with the GKP code to be fault tolerant? In this talk, we discuss the structure of logical Clifford gates for the GKP code and how their understanding leads to a classification of the space of all GKP Codes. For GKP codes in a single mode, we explain their relationship to complex elliptic curves and how smooth implementations of Clifford gates can be understood as homotopically non-trivial loops in their moduli space. This connection establishes a geometric understanding of fault-tolerance for quantum computation via the fiber bundle framework for fault tolerance proposed by Gottesman & Zhang and I argue how this understanding can be extended to other qubit- or qudit based quantum error correcting codes via an embedding provided by the GKP code. As ``universal cover´´ for stabilizer quantum error correction, I speculate how quantum error correction with the GKP can serve to establish a new bridge between real physics and modern developments in mathematics. This talk will be based on joint work with A. Burchards and S. Flammia presented in arxiv:2407.03270 [quant-ph] .




Other Videos By QuICS


2024-10-28Edwin Barnes: Control-based variational quantum algorithms and dynamical noise suppression
2024-10-28Ravi Naik
2024-10-28Yuan Liu
2024-10-28Péter Kómár: Quantum phases of Rydberg atoms on Shastry - Sutherland lattice
2024-10-28Hakan Türeci: Harnessing Quantum Dynamics for Inference on Data Embedded in Weak Signals
2024-10-28Junyi Liu
2024-10-27Quntao Zhuang: Dynamical Transition in Controllable Quantum Neural Networks with Large Depth
2024-10-27Vahagn Mkhitaryan: Quantum phases of Rydberg atoms on Shastry - Sutherland lattice
2024-10-27Hossein Sadeghi: Analog quantum computing with neutral atoms
2024-10-27Sheng-Tao Wang: Some Results on Aquila - QuEra’s neutral-atom analog quantum computer
2024-09-24Jonathan Conrad: GKP Codes: A Rosetta Stone for Quantum Error Correction
2024-08-20Ivan Rojkov: Stabilization of cat-state manifolds using nonlinear reservoir engineering
2024-07-09Marcos Crichigno: Quantum Spin Chains and Symmetric Functions
2024-05-28Kenneth Rudinger: QCVV: Making Quantum Computers Less Broken
2024-05-28Narayanan Rengaswamy: Tailoring Fault-Tolerance to Quantum Algorithms
2024-05-28Timur Tscherbul: JQI-QuICS Special Seminar
2024-02-19Anatoly Dymarsky: Classical and quantum codes, 2d CFTs and holography
2024-02-05Carleton Coffrin: Some Unexpected Applications of Analog Quantum Computers
2023-11-28Alexander Kwiatkowski: Optimized experiment design and analysis for fully randomized benchmarking
2023-11-09Roger Mong: Measurement Quantum Cellular Automata and Anomalies in Floquet Codes
2023-10-11Yu Tong: Recent progress in Hamiltonian learning