Let \( A B C \) be a triangle such that \( \overrightarrow{B C}=\vec{a}, \overrightarrow{C A}=\v...
Channel:
Subscribers:
443,000
Published on ● Video Link: https://www.youtube.com/watch?v=IjFym7QcVWc
Let \( A B C \) be a triangle such that \( \overrightarrow{B C}=\vec{a}, \overrightarrow{C A}=\vec{b}, \overrightarrow{A B}=\vec{c} \), \( |\vec{a}|=6 \sqrt{2},|\vec{b}|=2 \sqrt{3} \) and \( \vec{b} \cdot \vec{c}=12 \) Consider the statements:
\( (\mathrm{S} 1):|(\vec{a} \times \vec{b})+(\vec{c} \times \vec{b})|-|\vec{c}|=6(2 \sqrt{2}-1) \)
(S2): \( \angle A C B=\cos ^{-1}\left(\sqrt{\frac{2}{3}}\right) \)
Then
(a) Both (S1) and (S2) are true
(b) Only (S1) is true
(c) Only (S2) is true
(d) Both (S1) and (S2) are false
š²PW App Link - https://bit.ly/YTAI_PWAP
šPW Website - https://www.pw.live