Let \( A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right] \)...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=ixmR3RDQ1sI
Let \( A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right] \) then
(a) \( A^{-n}=\left[\begin{array}{cc}1 & 0 \\ -n & 1\end{array}\right] \forall n \in N_{\text {. }} \)
(b) \( A^{-n}=\left[\begin{array}{ll}1 & 0 \\ n & 1\end{array}\right] \forall n \in \mathbf{N} \)
(c) \( \lim _{n \rightarrow \infty} \frac{1}{n} A^{-n}=\left[\begin{array}{cc}0 & 0 \\ -1 & 0\end{array}\right] \)
(d) \( \lim _{n \rightarrow \infty} \frac{1}{n^{2}} A^{-n}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \)
P
W
π²PW App Link - https://bit.ly/YTAI_PWAP
πPW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw