Let \( \alpha \) be an integer such that \( \lim _{x \rightarrow 7} \frac{18-[1-x]}{[x-3 \alpha]...

Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=_4ggObdgbdw



Category:
Let's Play
Duration: 10:33
0 views
0


Let \( \alpha \) be an integer such that \( \lim _{x \rightarrow 7} \frac{18-[1-x]}{[x-3 \alpha]} \) exists, where \( [t] \) is greatest integer \( \leq t \). Then \( \alpha \) is equal to
(a) -6
(b) -2
(c) 2
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live




Other Videos By PW Solutions


2023-06-08If \( y=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right) \), then which of the following is false? (a)...
2023-06-08\( A B C \) is an isosceles triangle inscribed in a circle of radius \( r \). If \( A B=A C \) a...
2023-06-08Let \( \alpha \) be a positive real number. Let \( f: R \rightarrow R \) and \( g:(\alpha, \inft...
2023-06-08Let \( \beta=\lim _{x \rightarrow 0} \frac{\alpha x-\left(e^{3 x}-1\right)}{\alpha x\left(e^{3 x...
2023-06-08If \( y=\frac{1}{p^{2}+p-2} \) where \( p=\frac{1}{x-1} \), then the number of points of discont...
2023-06-08If \( \beta=\lim _{x \rightarrow 0} \frac{e^{x^{3}}-\left(1-x^{3}\right)^{\frac{1}{3}}+\left(\le...
2023-06-08If \( \lim _{x \rightarrow 0} \frac{\alpha e^{x}+\beta e^{-x}+\gamma \sin x}{x \sin ^{2} x}=\fra...
2023-06-08\( \lim _{x \rightarrow \frac{\pi}{4}} \frac{8 \sqrt{2}-(\cos x+\sin x)^{7}}{\sqrt{2}-\sqrt{2} \...
2023-06-08\( \lim _{x \rightarrow 0} \frac{x \tan 2 x-2 x \tan x}{(1-\cos 2 x)^{2}} \) is equal to (a) 2 (...
2023-06-08\( \lim _{x \rightarrow-\infty}\left[\frac{x^{4} \sin \left(\frac{1}{x}\right)+x^{2}}{\left(1+|x...
2023-06-08Let \( \alpha \) be an integer such that \( \lim _{x \rightarrow 7} \frac{18-[1-x]}{[x-3 \alpha]...
2023-06-08If \( \lim _{n \rightarrow \infty}\left(\sqrt{n^{2}-n-1}+n \alpha+\beta\right)=0 \), then \( 8(\...
2023-06-08Let \( [t] \) denote the greatest integer \( \leq t \) and \( \{t\} \) denote the fractional par...
2023-06-08If \( \lim _{x \rightarrow 0} \frac{(n+1)^{k-1}}{n^{k+1}}[(n k+1)+(n k+2)+\ldots .+(n k+n)]= \) ...
2023-06-08The value of \( \lim _{n \rightarrow \infty} 6 \tan \left\{\sum_{\mathrm{r}=1}^{\mathrm{n}} \tan...
2023-06-08\( \lim _{x \rightarrow \frac{\pi}{2}}\left(\tan ^{2} x\left(\begin{array}{c}\left(2 \sin ^{2} x...
2023-06-08The value of \( \lim _{n \rightarrow \infty} \frac{[r]+[2 r]+\ldots+[n r]}{n^{2}} \), where \( r...
2023-06-08The value of \( \lim _{x \rightarrow 1} \frac{\left(x^{2}-1\right) \sin ^{2}(\pi x)}{x^{4}-2 x^{...
2023-06-08If \( \lim _{x \rightarrow 0} \frac{a e^{x}-b \cos x+c e^{-x}}{x \sin x}=2 \), then \( a+b+c \) ...
2023-06-08\( \lim _{x \rightarrow 0} \frac{\cos (\sin x)-\cos x}{x^{4}} \) is equal to (a) \( \frac{1}{3} ...
2023-06-08If \( \lim _{x \rightarrow 0} \frac{\sin ^{-1} x-\tan ^{-1} x}{3 x^{3}} \) is equal to \( l \), ...