Let \( f \) be a polynomial function satisfying \( f\left(x^{2}\right)-x f(x) \) \( =x^{4}\left(... VIDEO
Let \( f \) be a polynomial function satisfying \( f\left(x^{2}\right)-x f(x) \) \( =x^{4}\left(x^{2}-1\right) \forall x \in R^{+} \), which of the following is correct?
(a) \( f \) is an even function
(b) \( f \) is an odd function
(c) \( \lim _{x \rightarrow \infty} \frac{f(x)}{x^{3}}=1 \)
(d) \( \lim _{x \rightarrow \infty}\left(\frac{f(x)}{x^{2}}-x\right) \) exists and is equal to a non-zero quantity
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions 2023-06-08 A long conductor \( A B \) lies along the axis of a circular loop of radius \( R \). If the curr... 2023-06-08 The radius of the circular conducting loop shown in figure is \( R \). Magnetic field is decreas... 2023-06-08 Infinite long straight current carrying wire of current \( 2 \mathrm{~A} \) is placed near a squ... 2023-06-08 The soft-iron is a suitable material for making an electromagnet. This is because soft-iron has:... 2023-06-08 Comprehension \( \quad: \) If the sequence is defined by \( a_{1}= \) 0 and \( a_{n+1}=a_{n}+4 n... 2023-06-08 The vertical component of the earths magnetic field is \( 6 \times 10^{-5} \mathrm{~T} \) at any... 2023-06-08 Comprehension
A uniform and transverse magnetic field exists into a regular hexagonal region as ... 2023-06-08 Let \( f(x)=\max \{p, q, r\} \), where
\( p=\lim _{n \rightarrow \infty} \lim _{\alpha \rightarr... 2023-06-08 If \( \alpha \) is the root of the equation \( x-\tan x=3 \) where \( \alpha \in\left(\frac{\pi}... 2023-06-08 Let \( f(x)=\max \{p, q, r\} \), where
\( p=\lim _{n \rightarrow \infty} \lim _{\alpha \rightarr... 2023-06-08 Let \( f \) be a polynomial function satisfying \( f\left(x^{2}\right)-x f(x) \) \( =x^{4}\left(... 2023-06-08 Let \( f(x)=\max \{p, q, r\} \), where
\[
p=\lim _{n \rightarrow \infty} \lim _{\alpha \rightarr... 2023-06-08 \[
\lim _{x \rightarrow a} \frac{1}{\left(a^{2}-x^{2}\right)^{2}}\left[\frac{a^{2}+x^{2}}{a x}+\... 2023-06-08 \[
\lim _{x \rightarrow \infty}\left(\frac{(x+1)^{x}}{x^{x} \cdot e}\right)^{x}=
\]
(a) \( e^{1 ... 2023-06-08 \[
\lim _{x \rightarrow 0}\left(\frac{(1+x)^{\frac{2}{x}}}{e^{2}}\right)^{\frac{4}{\sin x}}
\]
(... 2023-06-08 If \( f(x)=\frac{\sin \{x\}-\{x\}}{\left(x^{2}+b x+c\right)^{3}}(\{\cdot\} \) is fractional part... 2023-06-08 If \( P=\lim _{x \rightarrow \tan 3}\left[\tan ^{-1} x\right]+2\left[1-\tan ^{-1} x\right]^{2}+\... 2023-06-08 \( \lim _{x \rightarrow 0} \frac{1-\frac{4}{\frac{1}{f(x)}+\frac{1}{f(2 x)}+\frac{1}{f(3 x)}+\fr... 2023-06-08 If \( f(x)=8 x^{3}+3 x \), then \( \lim _{x \rightarrow \infty} \frac{f^{-1}(8 x)-f^{-1}(x)}{x^{... 2023-06-08 If \( \alpha, \beta \) are two distinct real roots of the equation \( a x^{3}+x-1-a \) \( =0 \),... 2023-06-08 Let \( f(x)=\frac{\ln \left(x^{2}+e^{x}\right)}{\ln \left(x^{4}+e^{2 x}\right)} \). If \( \lim _...