Let \( f \) be an injective function such that \( f(x) f(y)+2=f(x) \) \( +f(y)+f(x y) \forall x,...
Channel:
Subscribers:
443,000
Published on ● Video Link: https://www.youtube.com/watch?v=is9GppG0KQw
Let \( f \) be an injective function such that \( f(x) f(y)+2=f(x) \) \( +f(y)+f(x y) \forall x, y \in R \). If \( f(4)=65 \) and \( f(0) \neq 2 \), then \( f(\mathrm{x}) \) is equal to, \( \forall x \in R \).
(a) \( x^{3}-1 \)
(b) \( x^{3}+2 \)
(c) \( x^{3}+1 \)
(d) \( x^{2}+49 \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live