Let \( f \) be derivable function \( \forall x \in R \) such that \( f\left(\frac{x+y}{2}\right)...
Channel:
Subscribers:
451,000
Published on ● Video Link: https://www.youtube.com/watch?v=1cE-39KyV_8
Let \( f \) be derivable function \( \forall x \in R \) such that \( f\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2} ; \forall x, y \in R \). If \( f^{\prime}(0)=-1 \) and \( f(0)=1 \), then :
(a) \( 2 f^{-1}(x)=f(x) \)
(b) \( f^{-1}(x)=2 f(x) \)
(c) \( f^{-1}(x)=-f(x) \)
(d) \( f^{-1}(x)=f(x) \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live