Let \( f: \mathbb{R} \rightarrow \mathbb{R} \) and \( \mathrm{g}: \...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=biNTbIo2Zvc
Let \( f: \mathbb{R} \rightarrow \mathbb{R} \) and \( \mathrm{g}: \mathbb{R} \rightarrow \mathbb{R} \) be respectively given by \( f(\mathrm{x})=|\mathrm{x}|+1 \) and \( \mathrm{g}(\mathrm{x})=\mathrm{x}^{2}+1 \). Define \( \mathrm{h}: \mathbb{R} \rightarrow \mathbb{R} \) by \( \mathrm{h}(\mathrm{x})=\left\{\begin{array}{lll}\max \{f(\mathrm{x}), \mathrm{g}(\mathrm{x})\} & \text { if } & \mathrm{x} \leq 0 \\ \min \{f(\mathrm{x}), \mathrm{g}(\mathrm{x})\} & \text { if } & \mathrm{x}0\end{array}\right. \)
The number of points at which \( \mathrm{h}(\mathrm{x}) \) is not differentiable is
\( \mathrm{P} \)
W
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw