Let \( f: \mathbb{R} \rightarrow \mathbb{R} \) be a continuous func...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=3Yjweq_fo94
Let \( f: \mathbb{R} \rightarrow \mathbb{R} \) be a continuous function defined by \( f(x)=\frac{1}{e^{x}+2 e^{-x}} \)
\( \mathrm{P} \) Statement-1: \( \mathrm{f}(\mathrm{c})=\frac{1}{3} \), for some \( \mathrm{c} \in \mathbb{R} \).
W
Statement-2 : \( 0\mathrm{f}(\mathrm{x}) \leq \frac{1}{2 \sqrt{2}} \), for all \( \mathrm{x} \in \mathbb{R} \).
(1) Statement-1 is true, Statement- 2 is true ; Statement- 2 is a correct explanation for Statement- 1 .
(2) Statement-1 is true, Statement-2 is true ; Statement-2 is not a correct explanation for statement-1.
(3) Statement-1 is true, Statement- 2 is false.
(4) Statement- \( -1 \) is false, Statement- 2 is true.
π²PW App Link - https://bit.ly/YTAI_PWAP
πPW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw