Let \( f(n)=\sum_{r=2}^{n} \frac{r}{{ }^{r} C_{2}{ }^{r+1} C_{2}}, a=\lim _{n \rightarrow \infty...
Channel:
Subscribers:
449,000
Published on ● Video Link: https://www.youtube.com/watch?v=mUo0Cc6ZPUA
Let \( f(n)=\sum_{r=2}^{n} \frac{r}{{ }^{r} C_{2}{ }^{r+1} C_{2}}, a=\lim _{n \rightarrow \infty} f(n) \) and \( x^{2}-\left(2 a-\frac{1}{2}\right) x+t=0 \) has two positive roots \( \alpha \) and \( \beta \).
\( \mathrm{P} \)
W
Minimum value of \( \frac{4}{\alpha}+\frac{1}{\beta} \) is :
(a) 2
(b) 6
(c) 3
π²PW App Link - https://bit.ly/YTAI_PWAP
πPW Website - https://www.pw.live