Let \[ f(x)=\left|\begin{array}{ccc} \operatorname{cosec} x & \sin ...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=IJ3OBz2Bz5M
Let
\[
f(x)=\left|\begin{array}{ccc}
\operatorname{cosec} x & \sin x & \operatorname{cosec} e^{2} x+\tan x \sec x \\
\sin ^{2} x & \sin ^{2} x & \sec ^{2} x \\
1 & \sin ^{2} x & \sin ^{2} x
\end{array}\right|
\]
then \( \int_{0}^{\pi / 2} f(x) d x \) equals
(a) \( -\left(\frac{\pi}{4}+\frac{8}{15}\right) \)
(b) \( \frac{\pi}{4} \)
(c) \( \frac{\pi}{4}+\frac{1}{5} \)
(d) \( \pi \)
π²PW App Link - https://bit.ly/YTAI_PWAP
πPW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw