Let \( f(x)\left\{\begin{array}{c}\int_{-1}^{x}|t-2| d t ; \quad x \neq 2 \\ k ; \quad x=2\end{a...
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=QiDDbkRSNf4
Let \( f(x)\left\{\begin{array}{c}\int_{-1}^{x}|t-2| d t ; \quad x \neq 2 \\ k ; \quad x=2\end{array}\right. \). If \( f(x) \) is continuous at \( x=2 \), then the value of \( k \) is equal to:
(a) \( \frac{3}{2} \)
(b) \( \frac{5}{2} \)
(c) \( \frac{9}{2} \)
(d) \( \frac{7}{2} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live