Let \( f(x)=\sqrt{1+x^{2}}, x\sqrt{3} \) \( \sqrt{3} x-1, \sqrt{3} \leq x4 \) \( \mathrm{P} \) \...
Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=yfVdKNKkz2s
Let \( f(x)=\sqrt{1+x^{2}}, x\sqrt{3} \)
\( \sqrt{3} x-1, \sqrt{3} \leq x4 \)
\( \mathrm{P} \)
\( [x], 4 \leq x5 \), where \( [x] \) is the greatest integer \( \leq x \)
\[
|1-x|, x \geq 5
\]
W
The number of points of discontinuity of \( f(x) \) in \( R \) is
(a) 3
(b) 0
(c) infinite
(d) none of these
π²PW App Link - https://bit.ly/YTAI_PWAP
πPW Website - https://www.pw.live