Let \( g(x) \) be a polynomial, of degree one \( \& f(x) \) be defined by \( f(x)=\left[\begin{a...

Channel:
Subscribers:
447,000
Published on ● Video Link: https://www.youtube.com/watch?v=qQdorWcFhs0



Duration: 10:02
1 views
1


Let \( g(x) \) be a polynomial, of degree one \( \& f(x) \) be defined by \( f(x)=\left[\begin{array}{cl}g(x), & x \leq 0 \\ \left(\frac{1+x}{2+x}\right)^{1 / x}, & x0\end{array}\right. \) and the continuous function \( f(x) \) satisfying \( f^{\prime}(1)=f(-1) \), then find \( g(x) \).
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live




Other Videos By PW Solutions


2023-06-08Let a function \( f: R \rightarrow R \) be defined as \[ f(x)=\left\{\begin{array}{ccc} \sin x-e...
2023-06-08The function \( f(x)=\left|x^{2}-2 x-3\right| \cdot e^{\left|9 x^{2}-12 x+4\right|} \) is not di...
2023-06-08Let \( f: R \rightarrow R \) be defined as \[ f(x)=\left\{\begin{array}{cc} \frac{x^{3}}{(1-\cos...
2023-06-08Let \( f:\left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \rightarrow R \) be defined as \[ f(x)=\left...
2023-06-08If \( f(x)=\left\{\begin{array}{cl}\frac{1}{|x|} & ; \quad|x| \geq 1 \\ a x^{2}+b & ; \quad|x|1\...
2023-06-08Let \( \alpha \in R \) be such that the function is continuous at \( x=0 \), where \( \{x\}=x-[x...
2023-06-08Let \( f: R \rightarrow R \) be a function defined as \[ f(x)=\left\{\begin{array}{cc} \frac{\si...
2023-06-08If \( f(x)=\| \sin (|x|-1)-2 \mid \) then (a) \( f(x) \) is continuous at \( x=2 \) (b) \( f(x) ...
2023-06-08Let \( f: R \rightarrow R \) be defined as \( f(x)=\left\{\begin{array}{cc}2 \sin \left(-\frac{\...
2023-06-08\[ f(x)=\left\{\begin{array}{cc} \frac{\tan 10 x-\sin x-\sin 3 x-\tan 2 x-\tan 4 x}{x^{3}}, & x ...
2023-06-08Let \( g(x) \) be a polynomial, of degree one \( \& f(x) \) be defined by \( f(x)=\left[\begin{a...
2023-06-08If \( f: R \rightarrow R \) is a function define by \[ f(x)=[x-1] \cos \left(\frac{2 x-1}{2}\rig...
2023-06-08Let \( f(x) \) be a differentiable and \( \mathrm{g}(\mathrm{x}) \) be a twice differentiable fu...
2023-06-08Let \( f(n)=1-4 \sin ^{2} \frac{\pi}{3 \cdot 2^{n}} \) be a function and \( T_{k}=\prod_{n=2}^{k...
2023-06-08Find number of points of non-differentiability of \( f(x)=\lim _{n \rightarrow \infty} \frac{\le...
2023-06-08If \( y=\cos ^{-1} \frac{a+b \cos x}{b+a \cos x}, ba \) then \( \frac{d y}{d x}= \) (a) \( \frac...
2023-06-08Let \( f(x) \) be a real valued function such that \( f(x)=\frac{2 x-1}{x-2} \forall x \in \) \(...
2023-06-08\( y=\sqrt[3]{\frac{x-5}{\sqrt[5]{x^{2}+4}}} \) find \( 60 \sqrt[3]{25 \sqrt[5]{4}} f^{\prime}(0) \)
2023-06-08Let \( f(x) \) be a function which is differentiable everywhere any number of times and \( f\lef...
2023-06-08If \( f(x)=[\ln x] \operatorname{sgn}\left(\{x\}-\frac{1}{2}\right) \) where \( 1 \leq x \leq 4 ...
2023-06-08Let \( f(x) \) be a non-constant thrice differential function defined on \( (-\infty, \infty) \)...