Let \( i(x) \) is a continuous function for all real values of \( x \) and satisfies \( \int_{0}...
Channel:
Subscribers:
443,000
Published on ● Video Link: https://www.youtube.com/watch?v=r7Brh4BlnuQ
Let \( i(x) \) is a continuous function for all real values of \( x \) and satisfies \( \int_{0}^{x} f(t) d t=\int_{x}^{1} t^{2} \cdot f(t) d t+\frac{x^{16}}{8}+\frac{x^{6}}{3}+a+a \) then value of \( a \) is equal to
\( \mathrm{P} \)
W
(A) \( -\frac{1}{24} \)
(B) \( \frac{17}{168} \)
(C) \( \frac{1}{7} \)
(D) None of these
š²PW App Link - https://bit.ly/YTAI_PWAP
šPW Website - https://www.pw.live