Let \( \mathrm{L}_{1}: \mathrm{x}+\mathrm{y}=0 \) and \( \mathrm{L}...
Channel:
Subscribers:
443,000
Published on ● Video Link: https://www.youtube.com/watch?v=Ga4cpiXU-kM
Let \( \mathrm{L}_{1}: \mathrm{x}+\mathrm{y}=0 \) and \( \mathrm{L}_{2}: \mathrm{x}-\mathrm{y}=0 \) are tangent to a parabola whose focus is \( \mathrm{S}(1,2) \).
\( \mathrm{P} \) If the length of latus-rectum of the parabola can be expressed as \( \frac{\mathrm{m}}{\sqrt{\mathrm{n}}} \) (where \( \mathrm{m} \) and \( n \) are coprime)
W then find the value of \( (\mathrm{m}+\mathrm{n}) \).
π²PW App Link - https://bit.ly/YTAI_PWAP
πPW Website - https://www.pw.live
Other Videos By PW Solutions
Tags:
pw