Let \( n \) be a positive integer and \( R=\{(a, b) \in \mathbb{Z} \times \mathbb{Z}|a-b|=n m \)....
Channel:
Subscribers:
445,000
Published on ● Video Link: https://www.youtube.com/watch?v=nkWUTQHS8vQ
Let \( n \) be a positive integer and
\( R=\{(a, b) \in \mathbb{Z} \times \mathbb{Z}|a-b|=n m \) for some
\( \mathrm{P} \)
\( 0 \neq \mathrm{m} \in \mathbb{Z}\} \) Then \( R \) is
(1) Reflexive on \( \mathbb{Z} \)
(2) Symmetric
(3) Transitive
(4) Equivalence relation on \( \mathbb{Z} \)
📲PW App Link - https://bit.ly/YTAI_PWAP
🌐PW Website - https://www.pw.live